Courses NonDegree Display 2022-2023
Course Description | To PDF | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course title | Forecasting for Economics and Business | ||||||||||||||||||||||||||||||||||||||||||||
Course code | EBC2089 | ||||||||||||||||||||||||||||||||||||||||||||
ECTS credits | 6,5 | ||||||||||||||||||||||||||||||||||||||||||||
Assessment | Whole/Half Grades | ||||||||||||||||||||||||||||||||||||||||||||
Period |
|
||||||||||||||||||||||||||||||||||||||||||||
Level | Advanced | ||||||||||||||||||||||||||||||||||||||||||||
Coordinator |
Alain Hecq For more information: a.hecq@maastrichtuniversity.nl |
||||||||||||||||||||||||||||||||||||||||||||
Language of instruction | English | ||||||||||||||||||||||||||||||||||||||||||||
Goals |
Understand the importance of knowing the mechanisms that generate univariate time-series data.
Learn the basic tools for making forecasts including software (E-Views). Learn and understand methods to investigate dynamic characteristics of time-series data. Gain practical experience in analysing, modelling and forecasting a time series and reporting the results in course paper. |
||||||||||||||||||||||||||||||||||||||||||||
Description |
PLEASE NOTE THAT THE INFORMATION ABOUT THE TEACHING AND ASSESSMENT METHOD(S) USED IN THIS COURSE IS WITH RESERVATION. A RE-EMERGENCE OF THE CORONAVIRUS AND NEW COUNTERMEASURES BY THE DUTCH GOVERNMENT MIGHT FORCE COORDINATORS TO CHANGE THE TEACHING AND ASSESSMENT METHODS USED. THE MOST UP-TO-DATE INFORMATION ABOUT THE TEACHING/ASSESSMENT METHOD(S) WILL BE AVAILABLE IN THE COURSE SYLLABUS.
This course will cover static and dynamic forecasting models, models with trends and seasonals, and cover the Box-Jenkins methodology for modeling cycles in stationary data. The course will provide students with a thorough understanding of time-series and with the empirical skills to estimate, test, and forecast the most appropriate dynamic models. |
||||||||||||||||||||||||||||||||||||||||||||
Literature |
The book by Diebold (2014), 'Forecasting' (available online).
|
||||||||||||||||||||||||||||||||||||||||||||
Prerequisites |
This course can be chosen as an elective by students in the Bachelor program of IBE and IES. Students must have a good and solid foundation in empirical econometrics and applied statistics, in particular statistics including knowledge about the multiple linear regression model.
James H. Stock and Mark W. Watson : Introduction to Econometrics provides a good level indication of the prerequisites knowledge students must have to be able to follow this course successfully. An advanced level of English. |
||||||||||||||||||||||||||||||||||||||||||||
Teaching methods (indicative; course manual is definitive) | PBL / Presentation / Lecture / Assignment | ||||||||||||||||||||||||||||||||||||||||||||
Assessment methods (indicative; course manual is definitive) | Final Paper / Participation / Written Exam | ||||||||||||||||||||||||||||||||||||||||||||
Evaluation in previous academic year | For the complete evaluation of this course please click "here" | ||||||||||||||||||||||||||||||||||||||||||||
This course belongs to the following programmes / specialisations |
|