Courses Bachelor Display 2016-2017
| Courses | Year UP Year Down | |||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Course Description | To PDF | |||||||||||||||||||||||||||||||||||||||
| Course title | Optimisation | |||||||||||||||||||||||||||||||||||||||
| Course code | EBC2105 | |||||||||||||||||||||||||||||||||||||||
| ECTS credits | 6,5 | |||||||||||||||||||||||||||||||||||||||
| Assessment | Whole/Half Grades | |||||||||||||||||||||||||||||||||||||||
| Period | 
 | |||||||||||||||||||||||||||||||||||||||
| Level | Intermediate | |||||||||||||||||||||||||||||||||||||||
| Coordinator | Stan van Hoesel For more information: s.vanhoesel@maastrichtuniversity.nl | |||||||||||||||||||||||||||||||||||||||
| Language of instruction | English | |||||||||||||||||||||||||||||||||||||||
| Goals | 
                        In this course the student will learn to solve both linear and non-linear constrained optimization problems.
                     | |||||||||||||||||||||||||||||||||||||||
| Description | 
                        Optimisation problems arise in all fields that econometricians encounter, such as operations research, game theory, statistics, micro- and macroeconomics and finance. The aim of this course is to show the methodology for solving constraint optimisation problems both for linear and non-linear problems. These methodologies are also known as Linear and Non-Linear Programming, respectively. The following topics and techniques will be treated: the standard simplex method, duality, sensitivity analysis, the primal-dual simplex method, the network simplex method, first and second order necessary and sufficient conditions, the Lagrangian-function, Kuhn-Tucker conditions and constraint qualification. Besides this, special attention is paid to the application of these methodologies in practical problems.
                     | |||||||||||||||||||||||||||||||||||||||
| Literature | 
                        Course book. Vanderbei, R.J., Linear Programming: Foundations and Extensions, 4th ed., Springer, 2014 (ISBN 978-1-4614-7629, DOI 10.1007/978-1-4614-7630-6). | |||||||||||||||||||||||||||||||||||||||
| Prerequisites | 
                        Basic algebra (for linear programming), and advanced calculus (for nonlinear programming).  Exchange students need to be aware that very specific pre-knowledge is required for this course. A solid background in mathematics is necessary. Students should be aware of the following concepts: Algebra: working knowledge of vector computing and matrices (including inverse matrices). Linear equations, and find the solutions of a set of equations etc. Function theory on the level of optimisation of functions of multiple variables under side conditions (Lagrange multipliers) An advanced level of English. | |||||||||||||||||||||||||||||||||||||||
| Evaluation in previous academic year | For the complete evaluation of this course please click "here" | |||||||||||||||||||||||||||||||||||||||
| This course belongs to the following programmes / specialisations | 
 |