Courses Bachelor Display 2022-2023
Course Description | To PDF | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course title | eLab Business Case I | |||||||||||||||||||||||||||||||||||||||
Course code | EBC1049 | |||||||||||||||||||||||||||||||||||||||
ECTS credits | 6,5 | |||||||||||||||||||||||||||||||||||||||
Assessment | Whole/Half Grades | |||||||||||||||||||||||||||||||||||||||
Period |
|
|||||||||||||||||||||||||||||||||||||||
Level | Introductory | |||||||||||||||||||||||||||||||||||||||
Coordinator |
Peter Schotman, Anne ter Braak For more information: p.schotman@maastrichtuniversity.nl; a.terbraak@maastrichtuniversity.nl |
|||||||||||||||||||||||||||||||||||||||
Language of instruction | English | |||||||||||||||||||||||||||||||||||||||
Goals |
* Students can extract information from third-party databases containing secondary firm data.
* Students can perform basic descriptive and visual analysis on extracted data. * Students can perform cross-sectional and dynamic analyses regarding firms' marketing and financial performance. |
|||||||||||||||||||||||||||||||||||||||
Description |
PLEASE NOTE THAT THE INFORMATION ABOUT THE TEACHING AND ASSESSMENT METHOD(S) USED IN THIS COURSE IS WITH RESERVATION. A RE-EMERGENCE OF THE CORONAVIRUS AND NEW COUNTERMEASURES BY THE DUTCH GOVERNMENT MIGHT FORCE COORDINATORS TO CHANGE THE TEACHING AND ASSESSMENT METHODS USED. THE MOST UP-TO-DATE INFORMATION ABOUT THE TEACHING/ASSESSMENT METHOD(S) WILL BE AVAILABLE IN THE COURSE SYLLABUS.
The eLab Business Case I course aims to combine the skills you learned in the previous courses during the year to solve central business problems. During the course you will apply analytic tools and software skills to datasets containing financial information and information on marketing spending. The course builds on knowledge you have acquired in previous courses, such as data visualization, regression and clustering. Your goal will be to use these tools to support management on various questions about firm performance. At the same time, you will learn how to gather secondary data yourself from academic databases and open web sources. This competence can for example be useful when you are writing your bachelor’s thesis or analytic courses that require data as input. Knowing which data is available from existing databases, and how to extract and prepare such data, then is a crucial skill before any analysis can be performed. |
|||||||||||||||||||||||||||||||||||||||
Literature |
Based on courses earlier in year 1.
|
|||||||||||||||||||||||||||||||||||||||
Prerequisites |
|
|||||||||||||||||||||||||||||||||||||||
Keywords |
|
|||||||||||||||||||||||||||||||||||||||
Teaching methods (indicative; course manual is definitive) | PBL / Presentation / Lecture / Assignment / Groupwork | |||||||||||||||||||||||||||||||||||||||
Assessment methods (indicative; course manual is definitive) | Attendance / Written Exam / Assignment / Computer test / Presentation | |||||||||||||||||||||||||||||||||||||||
Evaluation in previous academic year | For the complete evaluation of this course please click "here" | |||||||||||||||||||||||||||||||||||||||
This course belongs to the following programmes / specialisations |
|