Courses Master Display 2022-2023
Course Description | To PDF | |||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course title | Data Analytics (Accounting/Finance/Strategy) | |||||||||||||||||||||||||||||||||||||||||||||||
Course code | EBC4263 | |||||||||||||||||||||||||||||||||||||||||||||||
ECTS credits | 6,5 | |||||||||||||||||||||||||||||||||||||||||||||||
Assessment | Whole/Half Grades | |||||||||||||||||||||||||||||||||||||||||||||||
Period |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Level | no level | |||||||||||||||||||||||||||||||||||||||||||||||
Coordinator |
Gerard Pfann, Rachel Pownall For more information: g.pfann@maastrichtuniversity.nl; r.pownall@maastrichtuniversity.nl |
|||||||||||||||||||||||||||||||||||||||||||||||
Language of instruction | English | |||||||||||||||||||||||||||||||||||||||||||||||
Goals |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Description |
PLEASE NOTE THAT THE INFORMATION ABOUT THE TEACHING AND ASSESSMENT METHOD(S) USED IN THIS COURSE IS WITH RESERVATION. A RE-EMERGENCE OF THE CORONAVIRUS AND NEW COUNTERMEASURES BY THE DUTCH GOVERNMENT MIGHT FORCE COORDINATORS TO CHANGE THE TEACHING AND ASSESSMENT METHODS USED. THE MOST UP-TO-DATE INFORMATION ABOUT THE TEACHING/ASSESSMENT METHOD(S) WILL BE AVAILABLE IN THE COURSE SYLLABUS.
It is essential in today’s digital and global business world to acquire an in-depth understanding and knowledge of data analytics methods. Analytical skills are critical in providing relevant, accurate and timely information for decision making in a dynamic and global business environment. In order to provide participants with the necessary data analytical skills, we introduce them to relevant data analytical methods, show them how to apply these methods, how to interpret their findings, and present and communicate these findings. After providing an introduction to data analytics, we will focus on core data analytical techniques such as ANOVA and regression analysis. We will then extend the participants’ knowledge and insights by covering more advanced data analytics, such as factor analysis and structural equation modelling, limited dependent variables, time series analysis and panel analysis. We will use R as the analysis platform for this course. R is open source, and allows the application of a wide variety of data analytics on the same platform. |
|||||||||||||||||||||||||||||||||||||||||||||||
Literature |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Keywords |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Teaching methods (indicative; course manual is definitive) | ||||||||||||||||||||||||||||||||||||||||||||||||
Assessment methods (indicative; course manual is definitive) | ||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation in previous academic year | For the complete evaluation of this course please click "here" | |||||||||||||||||||||||||||||||||||||||||||||||
This course belongs to the following programmes / specialisations |
|