Courses Bachelor Display 2023-2024

Course Description To PDF
Course title Knowledge Discovery and Data Visualization
Course code EBC1045
ECTS credits 6,5
Assessment Whole/Half Grades
Period Start End Mon Tue Wed Thu Fri
2 30-10-2023 15-12-2023 X X
Level Introductory
Coordinator Roselinde Kessels
For more information:
Language of instruction English
* Students understand data preparation, modelling, data mining algorithms and visualization techniques within the Cross-Industry Standard Process for Data Mining.
* Starting from a messy database, students prepare the data for mining, apply modeling and visualization techniques and interpret the results for business cases.
* Students provide arguments why certain techniques within the Cross-Industry Standard Process for Data Mining are more suitable than others for specific data situations.
* Students evaluate the statistical appropriateness of different modelling techniques using model evaluation techniques and reflect upon the results.
* Students understand the importance and impact of modern data-driven technologies to different business industries and institutions.
* Students understand the ethical principles of objectivity, carefulness and respect for data privacy regulations.
* Students write reports including appropriate visualizations, deliver presentations and discuss the results in teams.
* Students know how to be self-reliant and self-sustaining when learning and implementing statistical methodologies that are new to them.
* Students collaborate and brainstorm in intercultural teams.
This course gradually sheds light on the complex relationships hidden within large datasets in business and economics, which are becoming more widespread every day. These datasets are large both in terms of the number of observations and variables collected. Large datasets require new methods for extracting relevant information, prediction and business decisions. This course introduces students to a set of modern statistical and data mining methods accompanied by supporting visualization approaches to process large data in business and economics. Topics include data cleaning and exploration, data mining methods such as k-nearest neighbour and regression trees, and model evaluation techniques. To learn how to apply the methods, the course walks students through a collection of hands-on analysis problems that make use of the basic functionality of the free software R for statistical computing and graphics.
Larose Daniel T. & Larose Chantal D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining. John Wiley & Sons, ISBN: 978-0-4709-0874-7. The book is accessible at Wickham Hadley & Grolemund Garrett (2016). R for Data Science: Visualize, Model, Transform, Tidy, and Import Data. O’Reilly, ISBN: 978-1-4919-1039-9. The book is also accessible at
Teaching methods (indicative; course manual is definitive) PBL / Presentation / Lecture / Assignment / Groupwork / Skills / Coaching
Assessment methods (indicative; course manual is definitive) Participation / Written Exam / Assignment / Presentation / Take home exam
Evaluation in previous academic year For the complete evaluation of this course please click "here"
This course belongs to the following programmes / specialisations
Bachelor Business Analytics Year 1 Compulsory Course(s)